

Exploiting Virtual Synchrony
in

Distributed Systems

Kenneth P. Birman
Thomas A. Joseph

TR 87-811
February 1987

OTIC
ELECTE 1

FB 2 51987

Department of Computer Science
Cornell University
Ithaca, New York 14853-7501

n * J~ _ T T M N
I)LS5'.Approved for public reloar.,

Do tributo nij~

* aB

rhis work was supported by the Defense Advanced Research Projects Agency (DoD
under ARPA order 5378, Contract MDA9O3-85-C-0124, and by the National Science Foun-
datior under grant DCR-8412582. The views. opinions and findings contained in this report
are th~ose of the authors and should nct be construed as an official Department of Defense
po:-ition. policy, or decision.

II

software would be greatly simplified. This paper describes a software abstraction, the virtually synchro-

nous process group, that makes it possible to build a tool kit having these characteristics. It then

presents the algorithms the tool kit uses and the interface it supports.

Virtually synchronous process groups arose out of the efforts of our group to build a prototype of

the ISIS system, ISIS, [Birman-b]. We started with an essentially ad-hoc system structure, but were

eventually forced to abandon it in favor of this new approach, which provides a light-weight abstraction

based on communication and addressing support for groups of processes that must cooperate in the

presence of failures. We found that it was surprisingly easy to build an efficient, highly concurrent

implementation of resilient objects on top of a layer supporting virtually synchronous process groups.

It became possible to argue the correctness of our algorithms, which had not been easy earlier. Contin-

ued work with virtually synchronous process groups has now convinced us that they represent an

extremely powerful tool for other types of distributed computing as well. This -has led us to provide

access to the process group abstraction at a lower level than in ISIS,, resulting in a new version of the

system, ISIS 2, which we discuss here.

Neither the notion of building systems from process groups nor that of providing an idealized com-

munication abstraction is a new one [Cheriton-a] [Lamport-al [Schneider-a]. What we have done in the 5-

ISIS project is essentially to unify these mechanisms and simultaneously to optimize their behavior in

the situations that arise most commonly when failures can occur. The result is a system capable of

satisfying even demanding practitioners that is at the same time rigorous in a formal sense.

2. Virtual synchrony in distributed systems

What makes the problems of synchronization, consistency and failure detection hard to tackle in a

distributed setting is the asynchronous propagation of information among processes. In the absence of

shared memory, the only way a process can learn of the behavior of other processes is through mes-

sages it receives. Likewise, the failure of a process is detected when a timeout occurs while waiting for

a message from it. Since message transmission times vary from process to process, and change with

the load on the system. messages relating to a single event may arrive at different processes at

-2 "

different times, and in different orders relative to other messages. This makes it difficult for a set of

processes to maintain a consistent view of the actions of the set, or for them to coordinate their actions

efficiently.

One way out of the problem would be to require that processes communicate only using broadcast

protocols2 that make message exchange synchronous and atomic (Chang] [Cristian] [Schneider-b].

Cooperating processes could then operate in lock step, exchanging messages (synchronously) with one

another at the end of each step. Maintaining a consistent view of one another is then easy, as each

process is always in the same point in its computation as any other. Synchronization is simple for the

same reason. Process failures can be detected consistently by having the communication subsystem

monitor the status of all processes and, if one fails, broadcast a message indicating that this has

occurred. All operational processes will then learn of its failure simultaneously, in the next step.

Figure la illustrates a conventional space-time diagram of a distributed system. C1 and C 2 are

two client processes communicating with a distributed service implemented by three processes St. S 2

and S 3 . The arrows pointing downward represent time, while the other arrows refer to messages being

passed from one process to another. Figure lb shows an environment where communication is by syn-

chronous broadcasts. The simplicity in the second case is apparent, particularly when one realizes that

the computation in Figure la represents at most a fragment of the one in Figure lb.

Synchronous broadcasts are clearly too expensive to be of general applicability. Nonetheless, the

example illustrates how trivial the issues of synchronization, consistency and failure detection become

in an environment where there are strict constraints on the order in which messages are delivered to

processes and in which there is a means of detecting process failures consistently. The approach is

expensive because it requires all broadcasts to be ordered relative to one another, regardless of whether

the application needs this to maintain consistency. This brings up a natural question: Is it possible to

provide a family of broadcast primitives that provide well-defined but varying guarantees on the order

in which messages are delivered? The implementation of each primitive could then be optimized to

, This is a broadcast to a -et)f proce .mse not to all the machnes connected to a local network with hardware broadcast

capabihtes

.3.

. ' d.-. ,.,',+,.+).Z %+,,++.i. , ., e +
-

", , . ,' . +.." #,-.,.+ ,. ' ' . _-.+ = .".". %,+° ,,,° . ' ' . ''" " ' ' " " " " "

addressed as a unit. Our treatment of process failures is novel: A failure of one of the members of a

virtually synchronous process group is made to appear as a broadcast to the operational members of the

group, as if the last action taken by the failed process was to send a broadcast to the other processes

informing them of its failure. This "failure broadcast" has well-defined ordering properties relative to

other broadcasts. Thus the non-determinism associated with a process failure is masked from the

application level, and a virtually synchronous process group can handle a process failure in much the

same way as it would respond to any other event.

The implementation aspects of our process group approach have been presented in detail in

[Birman-a]. The protocols we use assume that failures cause processes and sites to crash by halting rif

a site fails, all the processes residing there fail too), that such a failure results in the loss of any vola-

tile information stored in the failed process or the site4 , and that precautions must be taken to confirm

the validity of non-volatile information that could be used after recovery. The communication subsys-

tem can fail by losing messages or partitioning. It is also assumed that although clocks may be syn-

chronized, the precision that results is low in comparison to typical inter-site message latencies. We

believe that these assumptions are reasonable for a wide range of networks and are relatively indepen-

dent of current technology.

2.1. The broadcast primitives

Below, we list our broadcast primitives. All of them guarantee that if a message broadcast using

any of these primitives is received by one of the destination processes, it will eventually be received by

all of them. If a destination process fails while a broadcast is in progress, we treat it as having

received the message prior to failing. Since we assume that no volatile information stored by a process

survives a failure, the scenario in which the failed process received the message before failing is a per-

fectly valid one from the point of view of the operational processes -- thcy will never obtain information

inconsistent with this assumption. What we mean by guaranteed delivery, then, is that the failure of a

'Other systems that employ process groups, notably V ICheriton-al, do not provide virtually synchronous behavior

'We do not consider Byzantine failures vhere a process may fail by taking maliciously incorrect action,

I%
5_1

--~~~~~~ ~~~.-..---..:.-.-: ::.-. ...-......4- .:--- .- _.-..-,,v,.;,v--.-..- :

Lmd V* -, 7.T -M V. 7; o* Mr PL P 7.

to. Notice that CBCAST is similar to the message passing primitive used in the NIL system

[Strom] and by Jefferson in his work on virtual time [Jefferson], but whereas these approaches

optimistically deliver messages and then retract them when potential causality is subsequently

found to have been violated, CBCAST always respects potential causality and never rolls back.

[5] Causal atomic broadcast (CABCAST). This primitive is like ABCAST in that all CABCAST's

are ordered relative to other CABCAST's with the same label and relative to GBCAST's. In

addition, the order of potentially causal broadcasts is preserved.

The causal broadcast primitives have one further property which is a consequence of the causal

ordering rule. If a process issues a chain of CABCAST's and CBCAST's asynchronously (by resuming

execution while they are still in progress), then failures cannot leave a gap in the chain. For example,

if a process asynchronously initiates broadcasts a and b in that order before it fails, and if b is

delivered to some destination that stays operational, then a will be delivered to its destinations too,

even if the broadcasts had no destinations in common. Thus, if b contains information that refers to a,

no inconsistency will arise.

2.2. Addressing issues

Integrated with the primitives listed above is an addressing mechanism that binds group

identifiers to lists of members (again, see [Birman-a] for details). Each process is treated as a singleton

group whose identifier is formed from its process name. New group identifiers can be created at run

time, and processes can join or leave these groups using facilities detailed in Section 4. A group

identifier is very similar to a capabdity: it is unique and hard to forge, and can be stored, copied, or

passed from process to process. Using the addressing mechanism, a process can broadcast to a single

virtually synchronous process group or several groups at once. even though the membership of the

groups may be changing dynamically. When a broadcast is sent to such a group while its membership

is changing, the guarantee is that the broadcast will be delivered to all the processes that were in the %

group either before or after the change, and not to some intermediate or overlapping set of processes. %

., , ,,.,...........,,........ * . -... ,%.-,*.,, :- .
%

,
' *il--..\' , I

individually or collating them as was done in CIRCUS [Cooper].

3.2. Global task decomposition and dynamic reconfiguration

In the V system, process groups are used to implement diverse distributed services, sometimes

using non-identical components that divide the group data or task into parts, one for each group

member [Cheriton-a]. Task assignment can then be varied dynamically, for example to accommodate

process migration, failures, and recoveries, or to balance the workload on the system as a whole. V

implements a probabilistically reliable broadcast protocol with which clients issue requests to such

groups. It is our belief that as distributed systems get faster, even a small probability of unexpected

behavior could become a major difficulty for programmers undertaking to build highly automated or

critical software. In contrast. our broadcast primitives permit the construction of subsystems that are

reliable even when ta.sk assignment is varted dynamically.

To support this. a global data structure representing task assignments would be maintained in

each of the members of a virtually synchronous process group, and changes to it made using GBCAST.

Additionally, all group membership changes would be transmitted using GBCAST. Because GBCAST

is totally ordered relative to other communication events, all group members use the same task assign-

ment and the same list of group members when a given request is received, and because failures and

recoveries are also ordered in the same way at each member, all can react to such events in a con-

sistent manner. For example, a name service could implement a decomposition rule whereby requests

will be executed at the site where the requesting process resides if possible, using any deterministic

rule to decide which member will respond to a request from some other site. This would tend to minim-

ize the delay in responding to rcquests. Moreover, if a decision is made to transmit all requests to the

service using ABCAST, a rule could be implemented whereby requests originating at sites where no

member resides are handled by the the member "currently" responsible for the fewest requests.

Because the ABCAST delivery ordering is globally fixed, all members can deduce the disposition of

each request. Here. the added cost of transmitting requests using AB('-17' might be justified by the

t tter load sharing that results

-9.

. .-

77

I

When a the task decomposition rule used by a group is changed dynamically, it is often necessary

to transfer state from one process to another. For example, when a process joins a group, it may need

to know the current state of certain data structures global to the group. If the state has a compact

representation, this can be achieved by causing the RPC used to join the group to return the state, by

having each current member reply with a data structure encoding this information. In a virtually syn-

chronous sense, the new member joins and the state is transferred simultaneously. If the state is large,

another approach can be used. A GBCAST is used to inform the group that the new process is joining

the group and to appoint a process to coordinate the state transfer. The coordinating process uses one

or more CBCAST's to transfer the state, and when the entire state has been transferred, it informs all

the group members of this using a CBCAST. If the coordinator fails before completing the transfer, the -.

other members receive a failure GBCAST instead of the completion broadcast, and the state transfer

can be restarted by a new coordinator. Broadcasts made to the group during the state transfer will be

delivered to the new process as well, because the initial GBCAST included it in the group. These mes-

sages are buffered until the transfer is completed.

The above solution also permits the construction of software in which processes "migrate" from

site to site, as in V. Using our approach, migration is "instantaneous" from the perspective of external

clients communicating with the group, in the sense that communication with the group will always

take place before or after migration occurs. This eliminates any need for the client to be concerned

with dynamic changes to the internal state of a service, as can occur in systems like V if equivalently

strong guarantees are needed [Theimer.

3.3. Synchronization of concurrent computations

A virtually synchronous process group can easily implement distributed versions of such syn-

chronization constructs as semaphores, monitors, and locks. A semaphore can be constructed as fol-

lows. To initiate a P() operation, ABCAST is used to transmit the request to all processes in the group

including the one requesting the PO). Each process grants the semaphore in the order in which P,

reque!;ts are received. Since ABCAST's are delivered in the same order everywhere, all members grant

- 10-

p

the semaphore to the same process. When a process wishes to perform a V0, it simply uses MBCAST

to inform all processes of this. (In [Birman-c] we give a simple, low-overhead deadlock detector for this

setting).

A common use for semaphores is to obtain mutual exclusion on shared state variables. If the

semaphore is replicated at the same processes where the shared variables are located, updates to the

state variables and V() operations can both be implemented using asynchronous CBCASrs. Every pro-

cess p will always observe updates by any process q that acquired the semaphore before it, because p's

P() followed q's VO, which in turn followed q's updates. Since CBCAST respects causal orderings, the

messages describing q's updates must have been delivered before the one describing q's V0, and hence

before p's P0. Thus, instead of delaying computations each time a replicated variable is updated, they

are delayed only when a P0 is done, and updates still occur correctly.

When mutual exclusion on replicated data is obtained using read and write locks, it is common to

use local read locks and to replicate only write locks. The problem with non-replicated read locks.

though, is that they can be broken when failures occur [Bernstein]. In a virtually synchronous environ-

ment however, one can replicate a read lock by first acquiring it locally and then using an asynchro-

nous CBCAST to inform remote lock managers that the read lock has been acquired. If a failure

occurs, these CBCAST's are delivered before the failure GBCAST, hence the remote locks are acquired

before the failure is acted upon. The behavior of a replicated read lock results, although the cost is

essentially that of non-replicated one [Birman-b].

3.4. Coordinator-cohort computations

One method of obtaining fault-tolerance when using replicated objects is the coordinator-cohort

approach: Each time a replicated object is invoked, one of the copies is designated as the coordinator

for that invocation, while the other copies 'the cohorts) act as passive backups that take over in case

the coordinator fails. If the object processes several requests at once, the location of coordinators .an be

varied to share load, or minimize latency before a request is processed If a replicated object is imple-

mented as a virtually synchronous process group, the coordinator begins an execution bv using

-1 . %

CBCAST to inform the cohorts of the invocation and to pass them the arguments for the invocation. It

then executes the operation and uses another CBCAST to pass on the result of the execution to the

cohorts, which then update their copies of the object. Should the coordinator fail, the cohorts will

receive a failure GBCAST instead of the final CBCAST, and can chose a new coordinator to reexecute

the operation. Any rule that depends on the global properties of the process group and the contents of

the message can be used to pick the initial and subsequent coordinators; because GBCAST is ordered

relative to all other broadcasts, all the members will be in the same state when a GBCAST is received

and a new coordinator will be chosen unambiguously.

3.5. Maintaining serializability in replicated databases

By combining the above replicated data mechanisms, locking mechanisms, and coordinator-cohort

mechanisms, highly asynchronous transactions on replicated data can be implemented [Joseph]

[Birman-b]. In this approach the cost of a replicated write is close to that of a read: The critical path

for doing a write is short because it only involves initiating an asynchronous CBCAST, which runs

inexpensively in the background.

3.6. Recovery manager

One of the major problems that confronts a distributed systems designer involves automated

recovery from failure. We show how basing a system on process groups makes it possible to construct a

recov,,,r manager. At the time a process joins a process group, it informs the recovery manager of the

actions to be taken if it fails, and those to take subsequently when restart becomes possible. It also

uses the recovery manager when it wishes to take checkpoints, and if a failure occurs, the recovery

manager restarts processes either from the last checkpoint or by initiating a state transfer from process

group member(s) that survived the failure.

Observe the relationship between the actions of the recovery manager and the notion of virtual

synchrony A checkpoint, for example, is logically a snapshot of the state of a system at some instant

in time. and rollback to a checkpoint is logically an action that all processes in the system should

-12

ft. *..*.*s...........

o-, - ." - . -?' % I _ .- - ' ' .

undertake simultaneously [Chandy]. Recovery from failure has a similar flavor we would like to treat
A

the system as if failures occurred one by one in some fixed order, reconstructible after the fact by the

recovery manager. It can then determine which members of a process group failed last, and if these

are restartable, execute them with arguments indicating that they should recover from their last check-

points. Other processes would then be restarted, but with arguments causing them to join the opera-

tional members of process group (by state transfer from them). Recall that the GBCAST primitive is

totally ordered relative to all communication events. Thus, if an action is taken immediately upon

reception of a GBCAST message requesting it, the system state that results is logically equivalent to

one in which that action was taken simuftaneousty by all the recipients of the message 'provided that

the action itself is not sensitive to real time), which is exactly what is required for checkpoint and roll-

back. Notice that although GBCAST is a costly protocol, we are using it here for infrequent events.

For example, to initiate a checkpoint, the recovery manager need only use GBCAST to send a

checkpoint-request message to all the participants. On receiving this message, these write down their

current state, numbering checkpoints in increasing order (old ones can be discarded). Subsequently, all

participants can be asked to roll back to a checkpoint by sending another GBCAST, identifying the

checkpoint number to use. When the participants roll back, their states will be mutually consistent.

Participants that lack this checkpoint were not operational when it was made and should drop out of

their respective groups; participants that were operational then, but are not now, are treated as having

failed immediately after the checkpoint was made. In the absence of support for process groups, a more

complicated algorithm like the one given in (Koo] must be used to ensure system correctness.

Similarly, virtual synchrony can be exploited to determine the sequence of site and process

failures that occurred while a site was down. Each time the membership of a process group is changed,

the members log the new list of process group members (view) on non-volatile storage. Since GBCAST

is used to propagate membership changes, all will record the same sequence of views, but a failed pro-

cess may have only a prefix of the full sequence. Thus, if all process have failed, a recovering process

learns which were the last to fail by querying the other processes that were up in its last recorded

view The computation then follows the same scheme described in (Skeen], successively reducing the

13.

.'

set of candidates until it obtains a set of processes whose last views list the others as operational. The

recovery manager simply generalizes this by storing views in a single shared data structure and run-

ning this algorithm on behalf of many processes at one time.

4. The ISIS 2 system

The preceding sections have proposed aL powerful approach to distributed computing and illus-

trated its application to some of the standard problems one faces in this setting. A dual problem is to

package this approach into a facility that is elegant, easy to use, and hides correctness issues from the

programmers who use it. ISIS 2 does this by providing several major subgroups of mechanisms: an

implementation of the broadcast primitives and addressing mechanisms, a collection of tools based on

algorithms like the ones in the Section 3, and two higher level interfaces supporting fault-tolerant bul-

letin boards and resilient objects.

4.1. Virtually synchronous process group interface

Table 1 lists the primitives used to create and manipulate process groups in ISIS 2. Processes and

process groups are addressed by means of capabilities. The broadcast primitives take a capability list

as an argument and translate this into the set of destinations to which the broadcast should be sent.

The interface used to invoke a broadcast primitive (from the C programming language) is:

nresp := xbcast (dests, msg, nwanted. answ, alen);

Here, xbcast is one of gbcast, abcast, etc., dests is a list of capabilities annotated with the entry number

to invoke in the processes to which each capability corresponds, nwanted is the number of responses

desired, and answ is an array in which to store responses of length alen bytes each. A recipient replies

by invoking a reply primitive:

reply (caller, msg, extra.dests, answ, alen);

Here, extra-dests lists extra destinations, if any, to which a copy of the reply should be sent. By

default, replies are transmitted using CBCAST, although versions that use CAB(CAST and .,/I.CAST

are feasible.

- 14

. : - :-:. :::-f:-9: " ~

cap = pg..create (p-name) Create a process group containing the single process identified
by p-name. A capability on the group is returned.

pg-join (cap, p-name) Add process p-name to the process group identified by cap.S

pg leave (cap, pname) Delete process p-name from the process group identified by cap.

Also occurs automatically if a member of a process group fails.

pgmigrate (cap, old, new) Simultaneously add process new and delete process old
from the process group.

pg-delete (cap) Delete the process group corresponding to cap.

pg__members (cap) Returns the "current" membership of group cap.

pg-kill (clist, signo) Sends UNIX signal signo to the processes and groups in clist.

Table 1: Process group manipulation primitives

4.2. The distributed systems tool kit

Table 2 identifies a the tools provided in our first tool kit implementation. The tools implement

algorithms like the ones described in the previous section and have procedural interfaces. For example,

the recovery manager is divided into several subtools. One permits a process to register desired restart

actions and cleanup actions in a distributed recovery database; should a failure occur, the desired

action is automatically performed. Another is used to initiate a checkpoint: given a set of capabilities

on the subsystems to be checkpointed, it invokes a checkpoint routine in each member process at an

appropriate (logical) time. Taken as a set, the distributed systems tool kit represents a packaging of

the lower level algorithms into a form that even naive application programmers will be able to cope

with. Moreover, the most common actions (updates to replicated data and group RPC) rely on our

cheapest protocol (asynchronous CBCAST), ensuring that the average performance of applications that

use the tool kit routines will be good.

4.3. Bulletin boards

In (Birman-c], we describe a shared memory mechanism, modeled after Cheriton., problhm

oriented shared memory [Cheriton-bi, but with rigorous consistency properties. This facility which we

15

% %*

*,1~~ %.

which process p might use to schedule an operation to cleanup after itself.

Our approach addresses several aspects of bboard correctness. One is consistency: which involves

ensuring that the results the bboard returns to different clients are in agreement, and can be seen as a

question of enforcing orderings on the execution of operations. For example, a causally consistent

bboard guarantees that potentially causally related operations will be executed in the same order

everywhere, while total consistency provides a globally fixed execution ordering. Other forms of con-

sistency are discussed in [Birman-c]. A second aspect is synchronizatun, which we address by allowing

an operation to be guarded by an expression describing events that must be completed before the opera-

tion is scheduled. And, a third aspect is fault tolerance, which is handled by integrating a failure detec-

tion mechanism into the guards.

We do not see bboards as a single mechanism suited to all possible applications, but they seem to

be well suited to a large class of applications. For example, a designer of a chess application might use

a causally consistent bboard for interactions between a display expert, perhaps coded in C to take

advantage of the various window packages, a move generator coded in LISP, and a move evaluator

coded in PROLOG. Causal consistency ensures that if a posted data item is referenced in some subse-

quently posted item, a process reading the latter will also observe the former. Similarly, primitives

such as the ones from the S/Net's Linda Kernel could easily be implemented using a totally consistent

bboard - here, the total ordering is needed because the Linda tuple operations conflict with one

another. A number of interesting subsystems can be built by combining multiple bboards having

different levels of consistency. We see bboards as the sort of tool that a naive programmer might use

without learning more about distributed computing than is required to deal with the bboard interface.

4.4. Resilient objects

The resilient object support from ISIS, is being ported to ISIS 2 [Birman-b]. This subsystem

translates fault-intolerant, non-distributed object specifications into process groups that implement

those specifications so as to mimic a single fault-tolerant instance of the desired type of object, Clients

interact with the object using group RPC's (Figure 3), possibly bundlin4 multiple requests Lflto a

- 18-

Clients issue
transaction on
the calendar abject

t7-5

F191re : Cient ineratingwit a esilentcalndardatbas

tranacton y frst ssung BEINO nd henterinatng he equnce itha CMMIO o

ABORO. hus ifa caendr ojec suportng etreveand nset oeraion hasbee deignd,

Prorammigt eecue te squece f rquets

- -'-' - ., -

CAOJisetie" "3/186" -*.-. "Me Tom n-po 35)

Resliet Figur ier fr: Clients itrcing witalwyshrt a resilient caedrdtbaepestside-

dtr foscinsato yfrtisuin axcto BEGNf andetsi tensterionai n the seone wijeth can issueTs calo

aBothTr. ths ife aet canaoctn suporting etraive and insertse oprtonsurhascbeentrl desinda

19-,

storage allocation, top-level actions, and cobegin statements are provided. Finally, a roll-forward

failure recovery mechanism has been implemented.

The performance of our initial resilient object implementation was good, and is likely to improve

in our new system. However, the resilient object approach is strongly oriented towards a database

style of object, and the overhead associated with transactional execution is not negligible. Thus, an

application that can be implemented using the tool kit or a bboard will generally achieve higher perfor-

mance than if it was implemented using a resilient object.

5. Status and performance

At the time this paper is being written (Dec. 1986). our protocols have been implemented and most of the
code has been debugged as a user-mode process under UNIX. We plan to move this code into the UNIX
kernel to benefit from reduced context switching and scheduling overhead. At the present time, we are
unable to make precise performance statements, except o say that performance will exceed that of the pro-
tocols in ISIS 1 . Resilient objects can easily be ported lo run under the new system, and the tool kit will
be easy to construct, as most routines involve just a few calls to the protocols and the more complex ones.
like the version store, exist as part of ISIS,. The bboard implementation will be simple because the algo-
rithms are largely straightforward /Birman-b/. Thus, we are confident that all software described in this
paper will be operational by the end of summer in 1987 and that by mid-May we will be able to replace
this paragraph by a section giving performance figures for the protocols.

6. Conclusions and future directions

We have described the design rationale and features of a new system based on the notion that vir-

tually synchronous communication is the most straightforward methodology for building distributed

software. This approach enables us to insulate users from the details of message based interprocess

communication, but at the same time to provide programming tools that will perform well and have

precisely specified behavior, even in the presence of failures. The distributed programming methodol-

ogy that results is surprisingly simple but at the same time rigorous. Moreover, the overhead associ-

ated with our approach is paid primarily when a site fails or process group membership changes -- both

relatively infrequent events. Thus, substantial performance benefits and design simplicity are achieved

at low actual cost.

Many questions remain open. The most obvious is that we do not know how to infer the choice of

protocol from context, or the level of consistency need- d for a given bboard aop'icatitro In practice.

-20

however, this does not seem difficult. We have largely overlooked real time issues, although these are

important in many settings where fault-tolerance is needed. One possibility may be to place loose time

constraints on message delivery and signal a "timing fault" when those constraints cannot be satisfied.

Extremely demanding real time scheduling constraints, however, are probably incompatible with the

current ISIS2 design philosophy. Our handling of network partitioning is also weak, since the protocols

on which this work is based tend to block rather than risk incorrect actions when partitioning occurs.

We are now convinced that the process group approach represents a conceptual breakthrough. -

Having tried to build robust distributed software using other methodologies and failed, we have now

succeeded using this approach. The experience has turned us into believers in the sort of virtual

correctness the process group provides. As this technology becomes widely available and the remaining

limitations are overcome, it will enable relatively unsophisticated programmers to undertake a com-

pletely new kind of programming, perhaps contributing to the explosion of distributed computing that

has been predicted so often, but up until now has failed to materialize. Moreover, it provides an intri-

guing glimpse into the type of services a genuinely integrated distributed operating system might pro-

vide. It seems reasonable to expect that such systems will eventually become common, and that they

will will fundamentally change the way we formulate and solve distributed computing problems.
S.

7. Acknowledgements

The work reported here draws on work done in collaboration with many others. Dale Skeen was a

founder of the ISIS project, and the ABCAST and failure detection protocols arose from joint work with

him. Frank Schmuck and Pat Stephenson were also co-authors of the paper on bulletin boards that

was cited in Sections 3.6.3 and 4.3. Amr EI-Abbadi, Wally Deitrich, and Thomas Raeuchle were all

involved in the work on resilient objects reported in Section 4.4 We are also grateful to Ozalp Babao-

glu, Fred Schneider, Sam Toueg, and -John Warne for their many insightful comments and suggestions.

-21-

A %

